Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem.

نویسندگان

  • Miklós Pogány
  • Uta von Rad
  • Sebastian Grün
  • Anita Dongó
  • Alexandra Pintye
  • Philippe Simoneau
  • Günther Bahnweg
  • Levente Kiss
  • Balázs Barna
  • Jörg Durner
چکیده

Arabidopsis (Arabidopsis thaliana) NADPH oxidases have been reported to suppress the spread of pathogen- and salicylic acid-induced cell death. Here, we present dual roles of RBOHD (for respiratory burst oxidase homolog D) in an Arabidopsis-Alternaria pathosystem, suggesting either initiation or prevention of cell death dependent on the distance from pathogen attack. Our data demonstrate that a rbohD knockout mutant exhibits increased spread of cell death at the macroscopic level upon inoculation with the fungus Alternaria brassicicola. However, the cellular patterns of reactive oxygen species accumulation and cell death are fundamentally different in the AtrbohD mutant compared with the wild type. Functional RBOHD causes marked extracellular hydrogen peroxide accumulation as well as cell death in distinct, single cells of A. brassicicola-infected wild-type plants. This single cell response is missing in the AtrbohD mutant, where infection triggers spreading-type necrosis preceded by less distinct chloroplastic hydrogen peroxide accumulation in large clusters of cells. While the salicylic acid analog benzothiadiazole induces the action of RBOHD and the development of cell death in infected tissues, the ethylene inhibitor aminoethoxyvinylglycine inhibits cell death, indicating that both salicylic acid and ethylene positively regulate RBOHD and cell death. Moreover, A. brassicicola-infected AtrbohD plants hyperaccumulate ethylene and free salicylic acid compared with the wild type, suggesting negative feedback regulation of salicylic acid and ethylene by RBOHD. We propose that functional RBOHD triggers death in cells that are damaged by fungal infection but simultaneously inhibits death in neighboring cells through the suppression of free salicylic acid and ethylene levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis.

We determined the role of Phospholipase Dalpha1 (PLDalpha1) and its lipid product phosphatidic acid (PA) in abscisic acid (ABA)-induced production of reactive oxygen species (ROS) in Arabidopsis thaliana guard cells. The pldalpha1 mutant failed to produce ROS in guard cells in response to ABA. ABA stimulated NADPH oxidase activity in wild-type guard cells but not in pldalpha1 cells, whereas PA ...

متن کامل

Clathrin and Membrane Microdomains Cooperatively Regulate RbohD Dynamics and Activity in Arabidopsis.

Arabidopsis thaliana respiratory burst oxidase homolog D (RbohD) functions as an essential regulator of reactive oxygen species (ROS). However, our understanding of the regulation of RbohD remains limited. By variable-angle total internal reflection fluorescence microscopy, we demonstrate that green fluorescent protein (GFP)-RbohD organizes into dynamic spots at the plasma membrane. These RbohD...

متن کامل

Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity.

Reactive oxygen species (ROS) are potent signal molecules rapidly generated in response to stress. Detection of pathogen-associated molecular patterns induces a transient apoplastic ROS through the function of the NADPH respiratory burst oxidase homologs D (RbohD). However, little is known about the regulation of pathogen-associated molecular pattern-elicited ROS or its role in plant immunity. ...

متن کامل

Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation.

In animals and plants, pathogen recognition triggers the local activation of intracellular signaling that is prerequisite for mounting systemic defenses in the whole organism. We identified that Arabidopsis thaliana isoform CPK5 of the plant calcium-dependent protein kinase family becomes rapidly biochemically activated in response to pathogen-associated molecular pattern (PAMP) stimulation. CP...

متن کامل

Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses

Advances in proteomic techniques have allowed the large-scale identification of phosphorylation sites in complex protein samples, but new biological insight requires an understanding of their in vivo dynamics. Here, we demonstrate the use of a stable isotope-based quantitative approach for pathway discovery and structure-function studies in Arabidopsis cells treated with the bacterial elicitor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 151 3  شماره 

صفحات  -

تاریخ انتشار 2009